Untukmu Permataku



Untukmu Permataku
Ratmawati Malaka
Sebenarnya hari ini indah ketika aku mimpi
Tiga tahun yang lalu 9 Desember 1990
Aku berjalan tersaruk-saruk
Meniti jalan penuh onak
Tapi aku bersamamu ……..

Sebenarnya hari itu nikmat ketika aku mimpi
Dua tahun yang lalu 12 November 1991
Aku berdiri dalam jutaan bintang-bintang
Aku tak kuat meraihnya ………
Dan kau berikan sebuah bintang untukku

Sebenarnya hari itu indah ketika aku mimpi
Satu tahun yang lalu 25 Januari 1992
Aku kembali melangkah dalam sepi
Bergandengan dengan angin tanpa suara
Dan kau pergi meninggalkan bulan untukku

Sebenarnya hari ini nikmat ketika aku mimpi
Aku tetap melangkah dalam hayalan
Bergelut dengan waktu menanti fajar
Berharap matahari tetap bersinar ……
Aku tak berdaya 9 Desember 1993 ……
Namun Bulan dan Bintang yang kumiliki …..
Menantiku dengan cinta, Ingatkah semuanya kasih ?

                                                                                Bogor, 30 November 1993

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Kaca Mata Nurul



KACA MATA NURUL
 (Cermin)
HANIF UZWA HASANAH SUDIRMAN
(Murid Kelas VI SDN-ARRAHMAH TAMALANREA)

            Malam sunyi senyap, aku tiba-tiba terjaga dari tidur.  Aneh, kenapa aku berada di kamar yang tidak kukenal.  Kukucek-kucek mataku sekali lagi, masih aneh.  Oh, kulihat ada Nurul disampingku, baru teringat aku sedang bermalam di rumah sepupuku.  Mumpung libur, mau pergi rekreasi sebenarnya, tapi kata mama tunggu dulu cuaca cukup mendukung.  Tiap hari memang hujan selalu mengguyur Makassar, aduh sedih juga rasanya bosan di rumah terus.  Makanya begitu tanteku datang sama sepupuku Nurul, lalu aku diajak bermalam dirumahnya, aku langsung senang sekali.  Mama yang biasanya selalu cerewet kalau minta izin pergi main di rumah teman, setuju saja aku ikut tante ke rumahnya.  Mungkin mama kasian liat aku kesepian di rumah di hari libur.  Apalagi aku anak bungsu, perempuan pula kakakku semua laki-laki yang sudah tidak bisa diajak main.  Kak Adi dan Kak Ari sudah mahasiswa, sedang kak Ical lebih senang sibuk sendiri dengan lap-topnya.
            Sebenarnya dengan sepupuku Nurul, aku tak begitu suka, soalnya dia itu banyak maunya kalau bermain bersama, agak sombong dan sok ngatur, juga sangat pelupa.  Biasanya diawal bertemu, karena kami memang jarang bertemu dia baik sekali, menyenangkan, tapi kalau sudah lama baru bikin ulah.  Umur Nurul satu tahun lebih mudah dariku, jadinya aku satu kelas lebih tinggi dari dia.
            Saat bunyi azan subuh di masjid, aku telah bangun.  Ternyata menginap di rumah orang lain tanpa mama, susah juga tidur, gelisah dan tidak nyenyak.  Baru semalam di rumah tante rasanya sudah satu minggu, membosankan, mau pulang saja.  Aku cepat-cepat ke kamar mandi wuduk dan sholat subuh.  Kalau di rumah sendiri aku susah sekali bangun.  Nurul kemudian ikut bangun dan aku mau jalan pagi tapi lupa bawa sepatu, mau pinjam sepatu Nurul tapi tidak boleh dipinjam.  Pelit sekali kataku dalam hati.  Akhirnya setelah mandi dan sarapan kamipun bermain berby, boneka cantik.  Di atas tv aku tertarik dengan kacamata merah, amat manis kalau dipakai.  Aku ingin mencobanya.
” Nur, kita main ibu guru ya ” Kataku pada Nurul
” Ya boleh, kita jadi guru dan berby-nya jadi murid” Nurul kemudian menyusun berby bersandar pada dinding kamar.
” Aku boleh pake kaca mata itu ya ? Kita anggap aku ini ibu guru yang matanya minus.” Kataku sambil menunjuk kacamata merah di atas lemari televisi.
” Ya, boleh” Nurul memberikan kaca mata itu padaku.  Tapi baru beberapa saat kupakai, Nurul memintanya kembali.
” Ca, minta kaca matanya ya? Mataku juga minus, jadi aku juga bu guru yang pake kaca mata” Kata Nurul.  Aku sudah mulai jengkel, soalnya sebelum main aturannya Nurul tidak mata minus, kenapa tiba-tiba dia juga mau minus.  Memang sih, itu kacamatanya.  Tapi kan dia sudah tiap hari memandangi kacamata itu atau juga memakai kacamata itu.  Apa salahnya dia kasih pinjam aku hari ini saja.  Sebentar sore toh saya sudah mau pulang ke rumahku.
“ Ya, ambil nih, tapi kamu khan tidak minus Nur” jawabku kesal
“ Aku juga minus kok, malah minusku lebih tinggi” Nurul membela diri
“ La, kalau minusmu lebih tinggi, berarti tidak cocok dong dengan kaca mata ini” Jawabku juga berkilah
“ Anggap saja cocok” Jawab nurul tidak logis. 
“ Ok deh, aku istirahat dulu, kamu lagi yang jadi bu guru” Jawabku mulai kesal.  Beberapa saat Nurul berbicara dengan berby, rasanya aku ingin pulang cepat-cepat ke rumahku sendiri.  Aku membayangkan kamarku dan bonekaku, aduh baru terasa kamarku lebih menyenangkan.  Rupanya selama ini aku tak banyak bersyukur pada Allah, maafkan aku mama, aku terlalu banyak meminta.
“ Pinjam lagi dong kacamatanya” pintaku pada Nurul
“ Kan .... masih kupake” jawabnya mengejek.
Akupun diam saja, dan mencoba permainan lainnya, menyusun balok membuat bangunan dan menata sebuah kota yang indah.  Asyik juga, artinya Nurul main sendiri akupun main sendiri.  Nurul tiba-tiba menangis keras, aku kaget alang kepalang.  Ternyata kacamatanya jatuh dan pecah.  Ya ampun, akupun dalam hati berguman, makanya jadi orang jangan terlalu pelit.  Tapi melihat Nurul menangis dengan sedih, aku jadi ikut-ikutan sedih. 
“ Jangan sedih dong Nur, kita jadi ikutan pingin nangis.” Kataku menghiburnya, sambil mengusap rambutnya yang panjang.  Bukannya Nurul berhenti menangis, malah tangisnya makin menjadi-jadi.  Aku jadi salah tingkah, nanti mamanya datang dikiranya aku yang membuat dia menangis.  Ya Allah apa yang mesti kuperbuat ya.  Ngapain juga aku sebal sama dia tadi ya, sekarang baru terasa kalau sepupuku ini sebenarnya sangat mudah sedih. 
“ Kacamata itu hadiah terakhir dari nenekku Ca.  Waktu nenekku ke Singapura, dia membelikan kacamata itu untukku, sebelum akhirnya nenek meninggal seminggu yang lalu.  Kacamata itu sangat berarti untukku Ca, aku tidak mau kacamata itu rusak, aku ingin mengenang nenek kalau kacamata itu kupandangi atau saat aku pake.”
Aku jadi terpana, rupanya itu yang menyebabkan Nurul tak membolehkan aku menyentuh kacamata itu. Kalau aku jadi dia, pasti aku juga merasakan hal yang sama.  Ya Allah mengapa aku berprasangka buruk pada sepupuku sendiri.  Memang seminggu yang lalu neneknya, ibu dari bapaknya meninggal di tempat tidurnya pada saat istirahat siang. 
“ Maafkan aku ya Nur, aku tak menyangka kacamata itu hadiah dari nenekmu.  Masih bisa diperbaiki khan? Kita lem saja ya, lalu biar disimpan di lemari tv lagi.” Aku kembali menghiburnya.  Air mata Nurul terus mengalir deras, tapi paling tidak dia cuma terisak.  Kasian benar sepupuku, dia memang sering kesepian karena kedua orangtuanya dokter yang selalu sibuk.  Ketika neneknya masih hidup, dia sering dititip di rumah neneknya kalau ibu bapaknya lagi praktek atau di rumah sakit.  Pantas saja kacamata itu sangat berarti baginya.  Aku mengambil lem plastik di laci dan aku lem kacamata yang pecah itu, untung pecahnya hanya di bagian pinggir.  Jadinya kacamata itu menjadi seperti tak pecah lagi, namun aku diam-diam memotret kacamata itu, aku berjanji akan membelikan kacamata yang persis sama dengan pemberian neneknya untuk Nurul kalau aku ke Singapura.  Mama papa mengajakku jalan-jalan ke negeri singa itu bulan depan.
                                                                                                7 September 2009

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Rheological properties and Microstructure of Acid Milk Curd



Rheological Properties and microstructure of Acid Milk Curd by Curdlan Addition, a Polysaccharide from Bacteria
(Sifat-Sifat Reologi dan Mikrostruktur Curd Susu Asam dengan Penambahan Curdlan, Polisakarida Bakteri)

Ratmawati Malaka1 and Sudirman Baco1

Abstrak
            Dalam industri susu, penggunaan polisakarida yang diproduksi bakteri adalah penting dalam peningkatan bentuk dan tekstur produk akhir.  Curdlan ditambahkan dalam makanan untuk meningkatkan kualitasnya dan juga digunakan untuk membuat makanan baru.  Tujuan  penelitian ini adalah untuk mengetahui sifat-sifat reologi dan mikrostruktur curd susu asam dengan penambahan curdlan yang difermentasi dengan bakteri asam laktat.  Curd susu asam dibuat dari susu skim rekonstitusi 10%, ditambahkan dengan 0 – 1% curdlan, kemudian dipanaskan pada suhu 85oC selama 30 detik, diinokulasi dengan 1% Lb. delbrueckii subsp. bulgaricus B-5b dan diinkubasi pada 37oC selama 16 jam.  Viskositas, pH, hardness dan breaking energy curd susu asam yang mengandung curdlan meningkat dengan meningkatnya konsentrasi curdlan.  Pada kontrol curd susu asam tanpa curdlan hanya kasein misel dan Lb. delbrueckii subsp. bulgaricus B-5b yang terdapat dalam mikrostruktur gel.  Secara umum, sedikit meningkat derajat ikatan kasein misel menjadi rantai dan kluster dengan adanya curdlan dibandingkan dengan curd susu asam kontrol.  Curdlan saat berinteraksi dengan kasein misel, kelihatannya seperti massa benang halus yang bergabung seperti tali antara satu kasein dengan kasein lainnya, dan/atau sebagai lapisan massa benang halus pada permukaan kluster kasein misel.
Kata Kunci: Polisakarida Bakteri, Curdlan, Curd Susu Asam, Sifat-Sifat Reologi, Mikrostruktur.

Abstract
     In dairy industry, the use of polysaccharide producing bacteria is of interest with respect to improvement of body and texture of milk product. Curdlan is added to foods to improve their properties and is also used to make new foods.  The objective of this study was to investigate the rheological properties and microstructure of acid milk curd with curdlan addition, fermented by lactic acid bacteria. The acid milk curd was made from 10% reconstituted skim milk (RSM), added with 0 - 1% of curdlan, heated at 85ºC for 30 sec, inoculated with 1% of Lb. delbrueckii subsp. bulgaricus B-5b, and incubated at 37ºC for 16 h.  The viscosity, hardness and breaking energy of acid milk curd containing curdlan increased with increasing curdlan concentration.  In a control acid milk curd containing no curdlan (0% of curdlan), only casein micelles and Lb. Delbrueckii subsp. bulgaricus B-5b composed the gel microstructure.  In general, there was somewhat higher degree of linking casein micelles into chains and clusters in the presence of curdlan than in control acid milk curd. When curdlan interacted with casein micelles they appeared as fluffy mass joined by string between one-casein and the other, and/or a fluffy mass film on the surface of clusters of casein micelles.
Key word : Microbial polysaccharide curdlan, acid milk curd, rheological properties, Microstructure.


Introduction

     There have been many investigations involving optimization of milk curd texture. These studies have demonstrated that the total solid and fat levels in the milk, heat treatment of the milk prior to inoculation, homogenization, incubation conditions, and handling of the ripened coagulum will all affect the body of the final milk product. Another major way to affect the body yogurt is through the addition of stabilizers such as gelatin, pectin or another polysaccharides. Stabilizers are added to the product to increase viscosity as well as to decrease susceptibility to syneresis (Schellhaass and Morris, 1985).
     In dairy industry, the use of polysaccharide producing bacteria is of interest with respect to the improvement of body and texture of yogurt, in particularly in France and Netherlands where addition of plant or animal stabilizers is prohibited.
            Curdlan is extracellular slime polysaccharide of Alcaligenes faecalis var. myxogenes strain 10C3 where found by Harada for the first time at 1965. Harada was isolated, purified this polysaccharide and he concluded that curdlan is shown to contain about 10% succinic acid, 70 - 80% glucose, and small amounts of galactose and mannose and it seems to have beta-glycosidic linkages (Takahashi et al., 1986).  Curdlan is added to foods to improve their properties and is also used to make newfoods (Harada, 1992).
     Although polysaccharide has been widely investigated, little information exists on how effect polysaccharide in reconstituted skim milk fermented by lactic acid bacteria. This study determined the influence of curdlan on the rheological properties and microstructure of acid milk curd by lactic acid bacteria fermentation.

Materials and Methods
Lactic acid bacteria
            Lb. delbrueckii subsp. bulgaricus B-5b were obtained from Japan Milk Product Technology Association, Tokyo, Japan. During the course of the investigation the culture were routinely propagated in 10% RSM. The RSM was autoclaved at 121ºC for 15 min. and tempered to 37ºC prior to inoculation.  A 0.1% inoculum was added to the RSM and the culture was allowed to incubate at 37ºC over night.
Preparation of acid milk curd
            Acid milk curd was made from 10% RSM. These milks were added with curdlan (Takeda Chemical Industries Ltd., Osaka, Japan) with different concentration (0%, 0.2%, 0.4%, 0.6%, 0.8%, 1.0%), heated at 85ºC for 30 sec., cooled to 37ºC, inoculated with 1%(v/v) Lb. delbrueckii subsp. bulgaricus B-5b, and incubated at 37ºC for 16 h.
Rheometric properties
     Curdlan added acid milk curds were studied toward the viscosity by using a viscometer (Tokimec Inc., Visconic ED-model).  Steady shear rate of 1-100/s along with a MK 50 rotor assembly and NV sensor system operating at 25ºC, viscosity was expressed as millipascals per sec.
     The hardness of acid milk curd was measured with a Sanwariken JK-T type rheometer (Sanwariken Ltd., Tokyo) as a curd knife cut the surface of milk curd. These measurement conditions were 1.44mm/sec in penetration speed of the curd knife, 18 cm/min in chart speed and 0.1V in sensitivity of a recorder.
            Breaking energy of acid milk curd (stress x strain) was estimated on the basis of curd harness, cross section of the curd knife (0.1963 cm), length of milk curd (4.9363 cm), and penetration depth of the knife (0.4807 cm). Elastic modulus, stress/strain was a measure of elasticity in the instance of solid matter. The detailed calculation of breaking energy and elastic modulus for milk curd was described previously (Ohashi et al., 1983).
            From the chart, value for X and Y were determined on the methods described by Ohashi et al., 1978), using the following equations and conditions.
     Hardness = dyn
     Breaking energy (dyn/cm2) = (G/A) x (a/L)
     Elastic Modulus (dyn/cm2) = (G/A) / (a/L)
     Where:
     G = Hardness (dyn),        A = Transversal area of knife,
     a = Knife penetration,       L = Height of sample.

Surface structure of Lb. delbrueckii subsp. bulgaricus B-5b
            Appropriate dilutions of overnight Lb. bulgaricus subsp. Bulgaricus B-5b were spread on 5% skim milk agar plates with composition as follows:
             Skim milk        50.0 g                Yeast extracts      2.5 g
             Peptone            5.0 g                Glucose            1.0 g
             Agar              15.0 g
            These plates were incubated for 24-70 h at 37ºC.  A 2-4 mm cube of the agar with a colony on it was cut from each plate.  The sample were fixed in 2.5% glutaraldehyde solution for 24 h and post-fixed in 1% osmium tetraoxide solution for 5 h.  The samples were then soaked in a series of ethanol distilled water solutions (50, 60, 70, 80, 90, 95, 99.5% (v/v) ethanol) as intermediate fluid. Samples were allowed to stay for 10 min in each concentration, dried in a Hitachi HCP-2 type critical point drier (Hitachi Ltd., Tokyo), coated with gold in a Hitachi E-1030 type sputtercoater ((Hitachi Ltd., Tokyo), and examined with a Hitachi S-4100 type scanning electron microscope (SEM, Hitachi Ltd., Tokyo) at an accelerating voltage of 1.0 kV.
microstructure of milk curd
            A template was made by gluing 4x10 mm glass rods to the inside surface of a petridish cover.  A 3% agar solution (60ºC) was pored 13 mm deep into the petridish.  The template was then placed into the agar solution.  The template was removed after the agar had solidified, which resulted in the formation of cylindrical pores in the agar. The coagulated milk curd was then pipeted into the pores.  The surface was overlaid with 3% agar, which had been tempered to 45ºC.  After the agar overlay had solidified, 6 mm cubes containing a single cylindrical pore of coagulated milk, were cut out of the agar.  The agar cubes were fixed in 2.5% glutaraldehyde solution buffered at pH 7.0 with 0.1 M phosphate buffer, and then post-fixed in 1% osmium tetraoxide solution.  Samples were dehydrated in a graded alcohol series as described above, and then dried in a Hitachi HCP-2 type critical point drying apparatus (Hitachi Ltd., Tokyo), coated with gold in a Hitachi JFC-1 type, ion type sputter coater (Hitachi Ltd., Tokyo), and viewed in a Hitachi S-4100 type scanning electron microscope (Hitachi Ltd., Tokyo) at an accelerating voltage 1.0 kV.

Results and Discussion
Rheological properties
     Four kinds of rheological characterization have been examined in the experiment is viscosity, hardness, breaking energy and elastic modulus. However, there are many reason concerning with food quality control.
            The effect of curdlan concentration on the apparent viscosity of milk curd was determined as shown in the fig. 1. Curdlan have two types of gels, 'low set gel' if its heated at 60ºC and  'high set gel' if its heated at 95ºC (Takahashi et al., 1986) or above 80ºC (Harada et al., 1991).  We used heating at 85ºC for 15 sec.  The viscosity of acid milk curd containing curdlan increased with increasing curdlan concentration. Viscosity of acid milk curd on addition of curdlan (0-1%) and heated at 85ºC for 15 sec followed by inoculation with 1% Lb. delbrueckii subsp. Bulgaricus B-5b and incubation at 37ºC for 16 h, increased from 64.7 to 342.2 mpa/sec. The viscosity increased slowly between 0% and 0.4% concentration of curdlan, and increased linearly with an elevation of concentration above 0.4% curdlan concentration.  The increasing viscosity may be due to the fact that some casein, particularlyβ-casein, start to dissociate from the micelle, and dissolved casein molecules have a higher hydrodynamic volume. The addition of curdlan probably affected the hydrodynamic volume of casein micelle and acid milk curd formation. The use of curdlan in acid milk curd/yogurt increases the apparent viscosity and pH, however increasing pH is undesirable in yogurt making.  In yogurt, lactic acid produced by the bacterial culture lowers the pH below the iso-electric point and induced coagulum of casein (Harwalkar and Kalab, 1986).
            In the acid milk curd heated at 85ºC, hardness and breaking energy increased with increasing curdlan concentration (%). The breaking energy and hardness were not significant recognized between not-supplemented acid milk curd samples (0% of curdlan) and those with 0.2% curdlan concentration, and increased linearly with an elevation of concentration above 0.4% curdlan concentration.  This result can be explained in the microstructure of acid milk curd. The size of clusters of casein micelle was increased with increasing curdlan concentration, and curdlan added-acid milk curd, the pore dimensions are diminished, and the density of the matrix was increased. The individual casein may self associate or form associations with other fractions through hydrophobic or electrostatic interactions.
     Elastic modulus was demonstrated polynomial chart with increasing curdlan concentration.  Compared with acid milk curd with 0% curdlan (no addition curdlan), in the acid milk with 0.2% curdlan, elastic modulus decreased until 0.87x105 dyn/cm2, from 2.58x105 dyn/cm2.  Elastic modulus in acid milk curd with 0.4% of curdlan increased slowly from 0.76 to 2.50 x 105 dyn/cm in the acid milk curd with 1% of curdlan.
Microstructure of acid milk curd
     Scanning electron micrographs of the Lb. Delbrueckii subsp. Bulgaricus B-5b demonstrated that the surface appendages (slimy) is not present on the cell surface, indicated that the bacteria is non-ropy lactic acid bacteria.
     Thickening agents are used to improve the texture, increase the firmness, and prevent syneresis in yogurt.  This is important to help maintain good textural and visual properties during transportation and storage.
     The application of SEM to explain rheological behavior when studying exopolysaccharide-producing bacteria was used to help understand the mechanism and influence the physical properties.
            One of the reasons may be the relative difficulty of subjecting acid milk curd/yogurt to electron microscopy, particularly to scanning, because the fine yogurt network is very susceptible to electron beam damage (Kalab and Emmons, 1975).  Fixation, washing, and subsequent drying preserved the spatial configuration of the protein in the initial network.  Electron microscopy shows that the casein micelles were fused into chains and clusters, yet essentially retaining their globular shape in spite of the presence of bacteria possessing some proteolytic activity. The arrangement of the micelles and the formation of a protein skeleton created large free spaces inside the network, which are best seen under a scanning electron microscope. The casein micelles are easily distinguishable from lactic bacteria at magnifications over 2000x (Kalab and Emmons, 1975).
            It has already been mentioned that in yogurt, casein particle chains are linked at random and firm a matrix with relatively uniform pores (Harwalkar and Kalab, 1986) filled with the liquid phase (whey).  The milk curd containing curdlan, the pore dimensions are diminished, and the density of the matrix is increased.  In heated induced milk gels with high concentrations of milk proteins (14-20%), the protein network consisted of casein micelles either connected by short bridges or fused into long chains a clusters (Kalab and Emmons, 1975).
            Electron microscopy showed that yogurt consists of a protein matrix composed of chained and clustered casein particles. Chains are common in yogurt made from milk, which had been preheated to a minimum of 85ºC whereas large clusters of casein particles from the matrix of yogurt made from heated milk. Such a matrix is characterized by interstitial spaces (pores), the dimensions of which depend on the protein contention that matrix.  The casein micelles in milk started to disintegrate as the pH of the milk reached 5.5 due to the production of lactic acid by the bacterial culture.  The disintegration was most extensive at pH 4.8 but the proteins reaggregated into globular particles as the pH value was further decreased to 4.8 and lower (Harwalkar and Kalab, 1986). Yogurt made from heated skim milk, changes were not particularly conspicuous: individual micelles lost their sharp and smooth outlines and became ragged, grew somewhat in size and fused together into clusters and chains (Kalab and Emmons, 1975).
            In a control acid milk curd containing no curdlan, only casein micelles and lactic acid bacteria (Lb. delbrueckii subsp. bulgaricus B-5b) composed the gel microstructure (Fig. 2A). In general, there was a slightly higher degree among linking casein micelles into chains and clusters in the presence of curdlan than in control acid milk curd (Fig. 2B-2F). 
     The lack of differences was attributed to the low curdlan concentration (0, 0.2, 0.4, 0.6, 0.8 and 1.0%) in the acid milk curd.  Kalab and Emmons (1975) found that in yogurt contain gelatin may be visible to electron microscopy in yogurt containing 2% and 10% gelatin. Teggazt and Morris (1990) suggested that in ropy cultures, the EPS in attached to the bacterial cell surface and also interacts with the casein. When curdlan interacted with casein micelle they appeared as fluffy mass join by string between one-casein micelles and other casein micelles, and/or fluffy mass film in the surface of cluster of casein micelles.  In acid milk curd with 0.6% curdlan concentration, string fluffy mass film were lower than acid milk curd with 1% curdlan concentration.

Conclusion
              The result from this investigation can be concluded that curdlan increased rheological properties of acid milk curd.  Scanning electron microscope of acid milk curd demonstrated that curdlan improve degree among linking casein micelles into chains and clusters in microstructure of acid milk curd.

Acknowledgments
              We would like to thank Professor Tomio OHASHI and Professor Kiyoshi YAMAUCHI for supervision. We are grateful for the financial support Takeda Chemical Ind., Ltd., OSAKA for providing the samples of curdlan used in the experiments and Laboratory of Biochemistry and Technology of Miyazaki University, Japan.

References

Harada T., Kanzawa Y., Kanenaga K., Koreeda A. and A. Harada.  1991. Electron microscopic studies on the ultrastructure of curdlan and other polysaccharides in gels used in foods. Food structure, 10: 1-18.

Harada T. 1992.  The story of research into curdlan and the bacteria producing it. Trends in glycoscience and glycotechnology, 4(17): 309-421.

Harwalkar V.R. and M. Kalab. 1986. Relationship between microstructure and susceptibility to syneresis in yogurt made from reconstituted nonfat dry milk. Food microstructure, 5: 287-294.

Kalab M. and D.B. Emmons. 1975. Milk gel structure. V. Microstructure of yogurt in relation to the presence of thickening agents. J. of dairy research, 42: 453- 458.

Ohashi T., Haga S., Fujino H., Taniyama S., Yamaguchi K. and T. Akiyama. 1978.  Studies on the physical properties of milk and milk product: on the hardness, breaking energy and elastic modulus of milk rennet curd. Nippon shokuhi kogyo gakkaishi, 25 (10): 38-40.

Ohashi T., Nagai S., Masaoka K., Haga S., Yamaguchi K. and N.F. Olson. 1983.  Physical properties and microstructure of cream Cheese. Nippon Shokuhin kogyo gakkaishi, 30(5): 303-307.

Schellhaass S.M. and H.A. Morris. 1985.  Rheological and scanning electron examination of skim milk gels obtained by fermenting with ropy and non-ropy strains of lactic acid bacteria. Food microstructure, 4: 279-287.

Takahashi F., Harada T., Koreeda A. and A. Harada. 1986.  Structure of curdlan that is resistant to (13) ß-D-glucanase. Carbohydrate polymers, 6: 407-421.

Teggazt J.A. and H.A. Morris. 1990.  Changes in the rheology and microstructure of ropy yogurt during shearing. Food structure, 9: 133- 138.










Figure 1. Relationships of curdlan concentration to the viscosity, harness, breaking energy and elastic modulus of acid milk curd, fermented by Lb. Delbruckii subsp. Bulgaricus B-5B at 37 ºC for 16 hours








                  A                                  B







               C                                  D







               E                                  F

Figure 2. Microstructure of acid milk curd (10% skim milk). A) 0% of curdlan (control), B) added 2% of curdlan, C) added 0.4% of curdlan, D) added 0.6% of curdlan, E) added 0.8% of curdlan, F) added 1.0% of curdlan, a) Lb. Delbrueckii subsp. Bulgaricus B-5b, b) casein micelles











Figure 3.  Microstructure of acid milk curd (10% reconstituted skim milk) with addition of 0.6% curdlan (18,000x).














Figure 4.  Microstructure of acid milk curd (10% reconstituted skim milk) with addition of 1.0% curdlan (18,000x).


1 Staf Jurusan Produksi Ternak, Fakultas Peternakan Universitas Hasanuddin
Buletin Ilmu Peternakan dan Perikanan (terakreditasi), VI(I): 121-135 (2000)

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS